Х Всероссийский съезд по фундаментальным проблемам теоретической и прикладной механики 24-30 августа 2011 г., Нижний Новгород

Гравитационная конвекция дисперсных систем в сосудах с наклонными стенками

Институт механики МГУ им. М.В. Ломоносова лаборатория многофазных сред Невский Ю.А. nevskii_u@mail.ru

СОДЕРЖАНИЕ

- Мотивация
- Формулировка проблемы
- Общая гидродинамическая модель гравитационной конвекции
- Частные случай "медленной " конвекции в "больших" сосудах
- Примеры численного моделирования эффекта
 Бойкотта и возникновения вихрей
- Примеры неустойчивости типа Рэлея Тейлора и возникновения расслоений в среде частиц
- _ Выводы

ПРИМЕРЫ ГРАВИТАЦИОННОГО РАЗДЕЛЕНИЯ ФАЗ И ГРАВИТАЦИОННОЙ КОНВЕКЦИИ В ПРИРОДЕ И ПРОИЗВОДСТВЕ

Пузырьковые колонны, очистка воды, очистители «lamella» и т.д.

Конвекция в магматических очагах

Частицы проппанта Скважина Разрыв породы

Транспорт проппанта при гидроразрыве

ДРУГИЕ ПРИЛОЖЕНИЯ

Разделение компонент биологических жидкостей в медицинских приложениях Фракционирование гранулированных материалов в отстойниках И т.д.

Эффект Бойкотта (Nature, 1920, Vol. 104)

Arthur Edwin Boycott, FRS 1877-1938

Улучшение осаждения эритроцитов в крови в наклонных сосудах

Задачи для математического моделирования

(рисунки взяты из работ F.A. Blanchette et. al. 2002-2005, JFM, 2005, Vol. 529)

Двухконтинуальный подход

Уравнения баланса массы и импульса для і-ой фазы:

$$\frac{d}{dt} \int_{\tau(t)} \rho_i d\tau = 0, \quad \frac{d}{dt} \int_{\tau(t)} \rho_i \mathbf{v}_i d\tau = \oint_{\Sigma(t)} \mathbf{P}_i^n d\sigma + \int_{\tau(t)} \rho_i \mathbf{F}_i d\tau + \int_{\tau(t)} \mathbf{P}_{ij} d\tau$$

Обозначения:

- ${f P}_i{}^n$ тензор напряжений в фазе i, ${f P}_{ij}$ обмен импульсом между фазами i и j
- Несущая фаза несжимаемая ньютоновская жидкость
- Дисперсная фаза континуум не взаимодействующих сферических частиц
- На масштабе частицы число Рейнольдса мало

$$(Maxey M.R., Riley J.J., 1983): \qquad \mathbf{f}_{St} = 6\pi\sigma\mu \ (\mathbf{v} - \mathbf{v}_s) \quad \mathbf{f}_A = \rho\tau_s \left(\frac{d\mathbf{v}}{dt} - \mathbf{g}\right)$$
$$m\frac{d_s \mathbf{v}_s}{dt} = \mathbf{f}_{St} + \mathbf{f}_A + \mathbf{f}_{vm} + \mathbf{f}_{BB} + m\mathbf{g}$$
$$\mathbf{f}_{vm} = \rho\tau_s \left(\frac{d\mathbf{v}}{dt} - \frac{d_s \mathbf{v}_s}{dt}\right)$$
$$\mathbf{f}_{BB} = 6\sigma^2 \sqrt{\pi\mu\rho} \int_0^t \left(\frac{d_s (\mathbf{v} - \mathbf{v}_s)}{dt_1}\right) \frac{dt_1}{\sqrt{t - t_1}}$$

Основная математическая модель в безразмерной форме <u>Параметры</u> <u>Параметры</u> Масштабы: <u>частиц:</u> жидкости: U- стоксовская скорость оседания $V_s - CKOPOCTE$ L – высота сосуда **V** – СКОРОСТЬ m_s – macca *с*_{*m*} – доля частиц в максимальной упаковке μ — ВЯЗКОСТЬ σ -радиус l_t – длина скоростной релаксации частиц ρ – ПЛОТНОСТЬ с – объемная концентрация $\beta = \frac{L}{l_t}, \eta = \frac{\rho}{\rho_c}$ $\rho_{\rm s}$ – плотность $U = \frac{m_s g(1-\eta)}{6\pi\sigma u}, \quad l_t = \frac{m_s U}{6\pi\sigma u}$ $\operatorname{Re} = \frac{\rho UL}{\mu}, \operatorname{Sh} = \frac{L}{UT_t}$ div $((1-c)\mathbf{v} + c\mathbf{v}_s) = 0$, $\operatorname{Sh} \frac{\partial c}{\partial t} + \operatorname{div} (c\mathbf{v}_s) = 0$ $(1-c)\frac{d\mathbf{v}}{dt} + \frac{c}{\eta}\frac{d\mathbf{v}_s}{dt} = -\nabla p + \frac{1}{\operatorname{Re}}\sum_i \sum_i \frac{\partial}{\partial x_i}\varphi_0(c)\tau_{ij}\mathbf{k}_i - \frac{\beta c}{1-\eta}\left(\frac{1}{\eta}-1\right)\mathbf{j}, \quad \frac{d_s\mathbf{v}_s}{dt} = \mathbf{f}_s - \frac{\beta \mathbf{j}}{1-\eta}$ $\mathbf{f}_{s} = \beta \varphi_{1}(c)(\mathbf{v} - \mathbf{v}_{s}) + \varphi_{2}(c)\beta \chi \int_{0}^{t} \left(\frac{d_{s}\mathbf{v}}{d\tau} - \frac{d_{s}\mathbf{v}_{s}}{d\tau}\right) \frac{1}{\sqrt{t - \tau}} d\tau + \varphi_{3}(c)\frac{\eta}{2} \left(\frac{d_{s}\mathbf{v}}{dt} - \frac{d_{s}\mathbf{v}_{s}}{dt}\right) \chi = \sqrt{\frac{9\eta}{2\pi\beta}}$ $\alpha n_{s0} = \frac{c_0}{r}$ $+ \varphi_4(c)\eta \left(\frac{d\mathbf{v}}{dt} + \frac{\beta \mathbf{j}}{|1-\eta|}\right), \quad \lim_{c \to 0} \varphi_{1-4}(c) = 1, \quad \tau_{ij} = \frac{\partial \mathbf{v}_i}{\partial x_i} + \frac{\partial \mathbf{v}_j}{\partial x_i} - \frac{2}{3}\delta_{ij} \operatorname{div} \mathbf{v}$

Типичные значения основных параметров

	N	Jo α		r		β		η	Re		$A = \alpha \beta R e$
	1	0.0		10 4		$.419 \cdot 10^{8}$		0.415	15.715		$6.944\cdot10^7$
	2	0.0		10 2		$.650 \cdot 10^{8}$		0.261	1.085		$2.877\cdot 10^6$
	3		0.001		$6.338\cdot 10^5$			0.462	9.130		5787
	4		0.001		$4.523\cdot 10^7$			0.992	0.131		5943
	5		$0.1 \cdot 10^{-3}$		$2.392\cdot 10^7$			0.995	2.632		6296
	6		0.010		12009			0.999	52.640		6321
]	No	(σ [m *]	ho[kg/m]	n ³]	$ ho_{s}[{ m kg}/{ m m}^{3}]$	μ	$[kg/(m\cdot sec)]$	L [m]	U =	$=rac{mg(1-\eta)}{6\pi\sigma\mu}$ [m/sec]
	1 4.1		$0 \cdot 10^{-6}$ 1100		2650			0.001	0.25		$57.1\cdot 10^{-6}$
	2 1 3 9		$.0 \cdot 10^{-6}$	1100		4200		0.021	0.25		$82.9 \cdot 10^{-6}$
			$.0 \cdot 10^{-6}$	1250)	2700		0.023	0.15	$1.12\cdot 10^{-3}$	
4		13	$0 \cdot 10^{-6}$	1250)	1260		0.023	0.15		$16.1\cdot 10^{-6}$
	5 40		$.0 \cdot 10^{-6}$ 1000		1005		0.001		0.15		$17.5 \cdot 10^{-6}$
	6	$40.0 \cdot 10^{-6}$ 1		1000	0 1001		0.001		0.15		$351\cdot 10^{-6}$
. /	(1, 1, 1, 0, -6)										

* $(1 \, \text{micron} = 10^{-6} \text{m})$

Частные предельные случаи

Нулевая объемная доля, малые числа Рейнольдса

Похожая модель известна в литературе с 1977 г. (Hill W.D. et al., 1977)

Re <<1,
$$\beta$$
 >>1, α <<1, Sh = 1, $\alpha\beta$ Re = $O(1)$
div (**v**) = 0, $\frac{d_s n_s}{dt} = 0$, $\mathbf{v}_s = \mathbf{v} - \mathbf{j}$, $0 = -\nabla p_1 + \Delta \mathbf{v} - A n_s \mathbf{j}$

$$A = \frac{\alpha\beta\operatorname{Re}}{1-\eta}$$

<u>Конечная объемная доля, малые числа Рейнольдса</u>

$$\beta >> 1$$
, Re <<1, $\frac{c_0}{\eta} \sim O(1), \frac{c_0 \beta \operatorname{Re}}{\eta} = A \sim O(1)$, Sh = 1

$$\operatorname{div}(\mathbf{v}) = \frac{\partial cf}{\partial y}, \quad \frac{\partial c}{\partial t} + \operatorname{div}(c\mathbf{v}_s) = 0, \quad \mathbf{v}_s = \mathbf{v} - f(c,\eta)\mathbf{j}, \quad f(c,\eta) = \frac{1 - \eta\varphi_3(c)}{\varphi_1(c)(1-\eta)}$$

$$\nabla p_1 = \sum_i \sum_j \frac{\partial}{\partial x_i} \varphi_0(c) \tau_{ij} \mathbf{k}_i - A \frac{c}{c_0} \mathbf{j}, \quad \tau_{ij} = \frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j} - \frac{2}{3} \delta_{ij} \operatorname{div}(\mathbf{v})$$
$$\varphi_1(c) = \left(1 - \frac{c}{0.58}\right)^{-3.1}, \quad \varphi_3(c) = 1 \quad (*)\varphi_0(c) = 1 + \frac{5}{2}c, \quad \boxed{A = \frac{\beta \operatorname{Re} c_0}{\eta}}$$

R. Buscal et al. 1982

2D численное моделирование. Оседание облака частиц. Пример генерации вихрей

A=6000

Форма облака частиц

Вихревое поле

Эволюция облака частиц в наклонном сосуде. Оптимальные углы наклона

Эволюция поля концентрации частиц при A=600 и угле наклона $\Theta = \pi/6$. Время, необходимое для уменьшения начальной массы взвешенных частиц M(0) оf до значений 30, 25, 20, 15, 10, и 5% (кривые 1-6) в зависимости от угла наклона θ (рад.) при A = 6000. $M(t) - \int n \, d\sigma \quad M(0) - \int n \, d\sigma$

$$M(t) = \int_{\Sigma} n_s d\sigma, \quad M(0) = \int_{\Sigma} n_{s0} d\sigma$$

Численное моделирование осаждения примеси в сосуде, разделенном непроницаемой перегородкой

Объяснение эффекта Бойкотта – возникновение интенсивной вихревой зоны под диагональной перегородкой

Вихрь таков, что поток чистой жидкости направлен вверх, а поток суспензии – вниз.

Сравнение гравитационной конвекции суспензий с конечной и нулевой объемной долей частиц

выводы

Построена общая гидродинамическая модель гравитационной конвекции дисперсной среды.

Определен полный набор параметров, управляющих процессом гравитационной конвекции.

Сформулирован частный случай модели, соответствующий «медленной» гравитационной конвекции в «больших» сосудах.

Представлены примеры моделирования гравитационной конвекции суспензий в двумерном приближении. Получено качественное совпадение между расчетами и известными экспериментами.

Получено, что с увеличением коэффициента плавучести эффект Бойкотта становится более сильным. Показано, что эффект Бойкотта вызван образованием вихрей под наклонной стенкой. Для увеличения эффективности разделения фаз в наклонных сосудах необходимо создавать неоднородное распределение частиц в продольном направлении.

Получено, что учет в модели конечности объемной доли проявляется в эффекте изменения концентрации примеси вдоль лагранжевой траектории частицы и зависимости эффективной вязкости и скорости осаждения суспензии от концентрации. Для случая учета конечности объемной доли примеси диапазон оптимальных углов наклона сосуда существенно меняется.